BENEFITS OF ELKEM MICROSILICA® IN CONCRETE

Draft in preparation for October 2017

Founded in 1904 Owned by China National Bluestar since 2011 Headquarter in Oslo, Norway

Marine mega Structures – Durable microsilica concrete

Tsing Ma Bridge, Hong Kong

Bandra-Worli Sealink, Mumbai

Storebælt Bridge, Denmark

Tallest buildings – High strength microsilica concrete

Petronas Towers, KL

World One, Mumbai

Burj Khalifa, UAE

Tunnelling Examples – shotcrete, precast segments

Crossrail Railway Tunnel, London
21km twin-bore tunnels

Avrasya Tunnel, IstanbulUnder the Bosphorus strait

Delhi Metro, shotcrete & segments

Elkem Microsilica® - Global expertise in supply and use of microsilica for tunneling and shotcrete

- Trusted solution for shotcrete mix design, enabling optimum rheology, strength & durability
- Vast portfolio of major projects worldwide, including London's Crossrail underground railway
- ISO 9001:2008 certified quality management system

What is Elkem Microsilica®?

- Microsilica (also termed 'silica fume') highly reactive pozzolanic material
- International Standards
 - ASTM C1240
 - EN 13263

Mix Design

Application	Typical Dosage (% microsilica by mass of total cementitious binder)
Pumping aid	2 to 3
Self-compacting concrete	4 to 10
High strength concrete	6 to 10
Low permeability concrete	6 to 10
Underwater concrete	12 to 15
Sprayed concrete (Shotcrete)	8 to 12
Ultra-high performance concrete	15 to 25

Burj Khalifa, current worlds tallest building

Burj Khalifa

80 MPa superstructure concrete mix

- Elkem Microsilica® (10% of binder)
- Fly ash (13% of binder)
- Slump flow typically 600mm

Burj Khalifa

Piling concrete mix (SCC):

- Binder content 450kg/m³ with 37% FA & 7% MS
- Max. aggregate size 10mm
- Self-compacting consistence
- Water/binder ratio 0.32
- Strength required 60 MPa

Piling Concrete: Mean Strength Results						
Age, days	Compressive, 150mm cubes Tensile					
7	40.5 MPa	-				
14	51.5 MPa	3.75 MPa				
28	64.5 MPa	4.35 MPa				
56	75.5 MPa	-				

Piling Concrete: Durability Specification & Test Results							
Requirement	Method	Test Result					
Max water penetration, 10mm	BS EN 12390-8	Zero					
Max water permeability, 5mm	Din 1048	Zero					
Max water absorption, 1.5%	BS 1881: Part 122	0.7%					
Rapid Chloride Permeability, <1200 C	ASTM C-1202	590 C (28 days)					

Shanghai (Yangshan) Deep Water Port & Bridge

Port linked to mainland by 32 km bridge

• Bridge: 13,000 tonnes of Microsilica

• Port: 10,000 tonnes of Microsilica

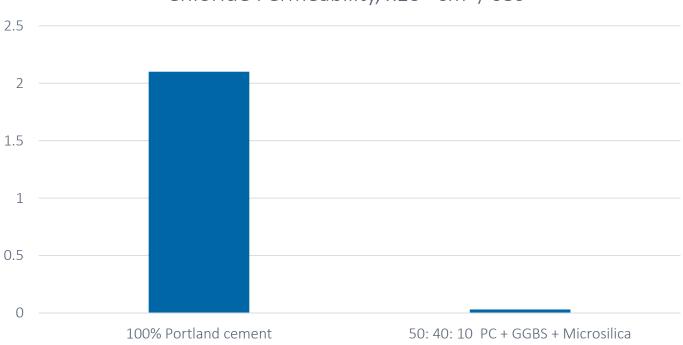
Yangshan Deep Water Port, Phase III, 2008

Yangshan Deep Water Port – Mix Design

C45	kg/m ³
Cement (pre-blended with 15% fly ash + 5% microsilica)	441
Fine aggregate	757
Coarse aggregate	1046
Water	150
Super plasticiser	6.17
Target slump	160 mm
w/c ratio	0.34
Theoretical density	2400

Reasons for selecting microsilica – improved resistance to corrosion

Structures at risk from chloride ion induced damage:


- Structures exposed to seawater
- Structures exposed to deicing salts

Sandberg report, uk, 1991 (testing: taywood engineering)

Oresund Link (Bridge & Tunnel) – Denmark to Sweden

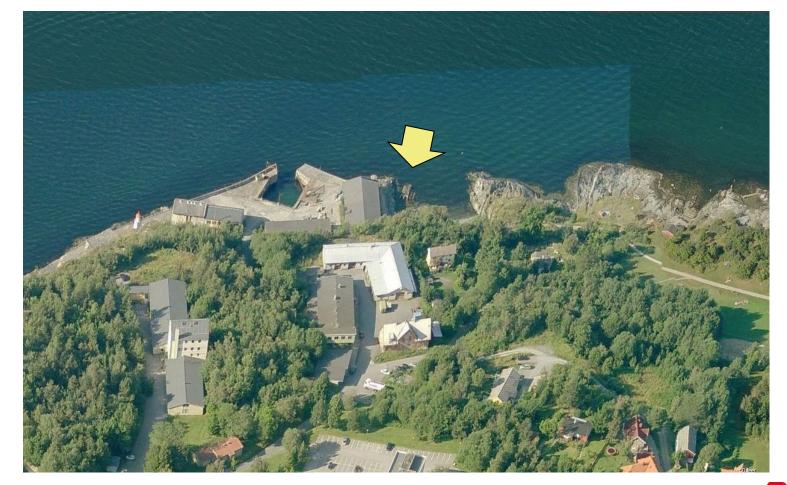
• Triple blend, 100 year service life

Abrasion resistance – Industrial Floors

- Microsilica helps resist abrasion
 - High strength concrete
 - Absence of bleeding means no weak top layer is formed
 - Good bond between paste & aggregate
- Popular application in UK
- High performance concrete lasts longer
 - Saves money

Long-term study – 31 years

- Concrete blocks placed in situ in March 1983
- Installed at tidal zone at Trondheim, Norwegian coast
- Five concrete mixes blocks size 0.5m x 1.5m x 1.5m
- Removed from site 31 years later


- Interim periodic reporting for example:
 - Hammer, T & Havdahl, J (1986), SINTEF report STF65 A86003
 - Skjølsvold, O (2005), SINTEF report STF50 F05038

Long term test site location: Trondheim, Norway

Location

- Splash zone condition
 - Low tide, blocks not immersed in seawater
 - High tide, approximately 0.2m of the blocks remained above water
- Wind and wave action
- Frost episodes during winter

Typical climate data at test site

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Air temp, °C	-2.5	-1.8	0.8	4.0	9.6	12.8	14.0	13.6	9.8	6.2	1.3	-1.0
Sea temp, °C	4.3	3.3	4.3	5.6	9.1	12.1	13.9	13.8	11.6	9.2	6.7	5.3
Saline content, %	3.18	3.18	3.24	3.13	2.27	2.22	2.32	2.62	2.90	3.06	3.03	3.08

Ref: Skjølsvold et al (2007); Norwegian Meteorological Institute; SINTEF

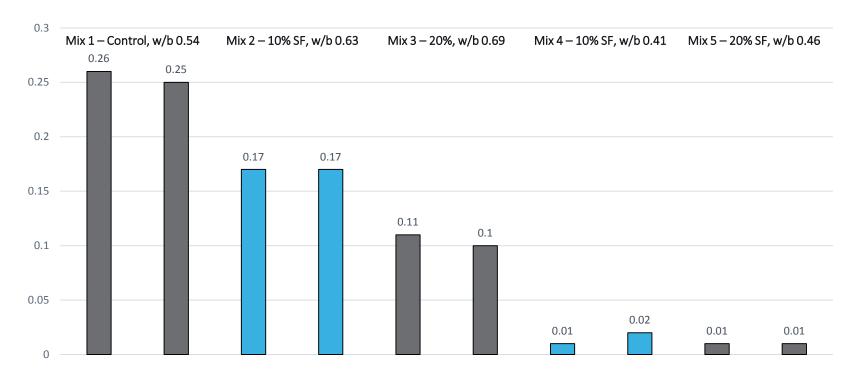
5 concrete mix designs – Range of w/b ratios, 10% and 20% silica fume

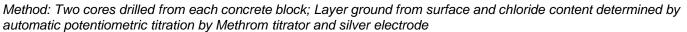
	Control	Reduced ceme	ent + Silica fume	Increased cement + Silica fume		
	Mix 1	Mix 2	Mix 3	Mix 4	Mix 5	
CEM I, kg/m ³	370	275	234	457	394	
w/c ratio	0.54	0.70	0.83	0.45	0.55	
Silica fume dosage*	0 %	10 %	20 %	10 %	20 %	
Silica fume, kg/m³	0	27.5	46.8	45.7	78.8	
Total binder, kg/m ³	370	302.5	280.8	502.7	472.8	
w/(total binder) ratio	0.54	0.63	0.69	0.41	0.46	

^{*} calculated as percent of CEM I mass

Visual inspection of blocks after 31 years in tidal zone

Mix 1 - Control, w/b 0.54

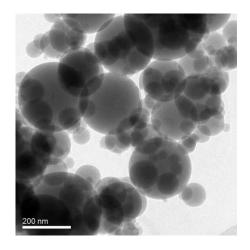



Mix 4 – 10% Silica Fume, w/b 0.41

Chloride ingress – at layer 50mm - 65mm from surface, CI- % of dry concrete

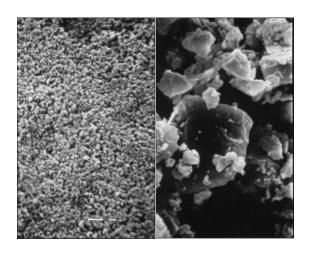
Notes on long-term study

- Results are consistent with previous studies Elkem Microsilica® concrete has more resistance to degradation caused by the ingress of aggressive ions this has now been demonstrated empirically over a 31 year time span
- Structural integrity of the Elkem Microsilica® concrete with reduced water/binder ratio was maintained
- Microsilica mixes showed significant reductions in chloride contents at typical reinforcement depths after 31 years in severe marine exposure
- The practical consequence of these factors is that Elkem Microsilica® significantly reduces the risk of chloride-initiated corrosion, especially in concrete exposed to severe marine environments



How Elkem Microsilica® works

• Pozzolanic reaction of Elkem Microsilica® results in reductions to capillary porosity and densification of interfacial transition zones around aggregates


Elkem Microsilica® – Physical properties

Microsilica particles:
•Extremely small size; <1 μm
•Spherical shape

Particle size comparison:

•Each microsilica particle about 100 times smaller than Portland cement

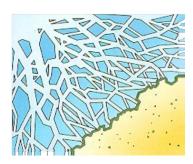
Elkem Microsilica® – Chemical properties

Elkem Microsilica® is safe, pure & consistent: •Typically >90% amorphous

silicon dioxide

Elkem Microsilica® is Pozzolanic:

 When mixed with Portland cement it reacts with calcium hydroxide, forming calcium silicate hydrate

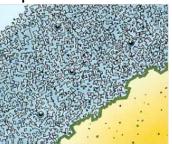


Reaction in Concrete

Plain concrete, no microsilica:

permeable cement paste structureweak 'transition zone' between aggregate & cement paste

Cement particle


Aggregate

Reaction in Concrete

Concrete with Elkem Microsilica®:

- Extremely small particles; beneficial packing
- •Pozzolanic reaction; SiO₂ reacts with Ca(OH)₂
- •Impermeable paste structure with strong transition zone

Elkem

110 years of history as a technology provider

Founded in 1904 by Sam Eyde

Owned by China National Bluestar since 2011

24 PLANTS WORLDWIDE

Headquarter in Norway

400 R&D PEOPLE

Global R&D centres in Norway and Lyon

3.600 EMPLOYEES

Worldwide

14,5 BNOK

Revenue in 2015

Elkem – our four business areas

Silicon Materials

Global producer and provider of silicon, microsilica and specialty materials

Silicones

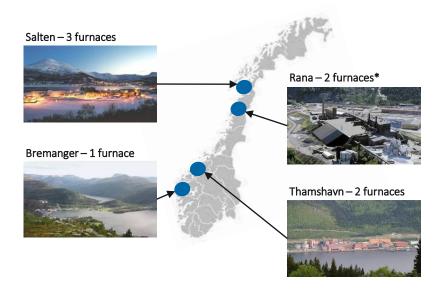
One of the foremost fully integrated silicones manufacturers in the world

Foundry Products

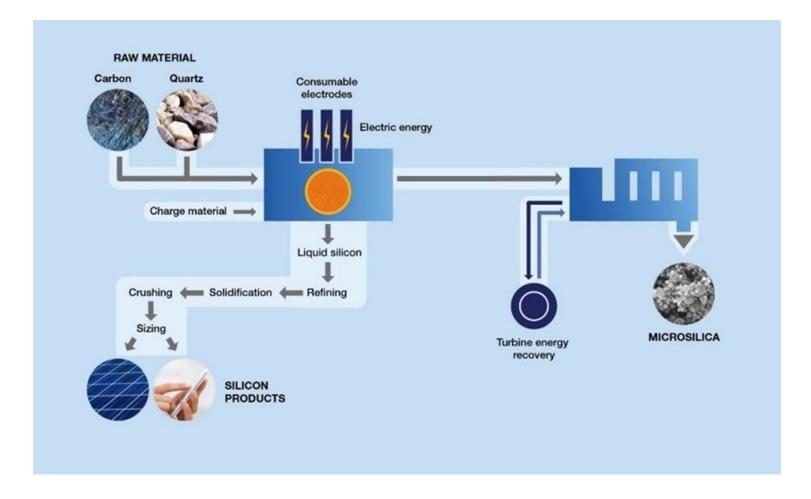
Leading producer of specialty-alloys for the foundry and steel industries

Carbon

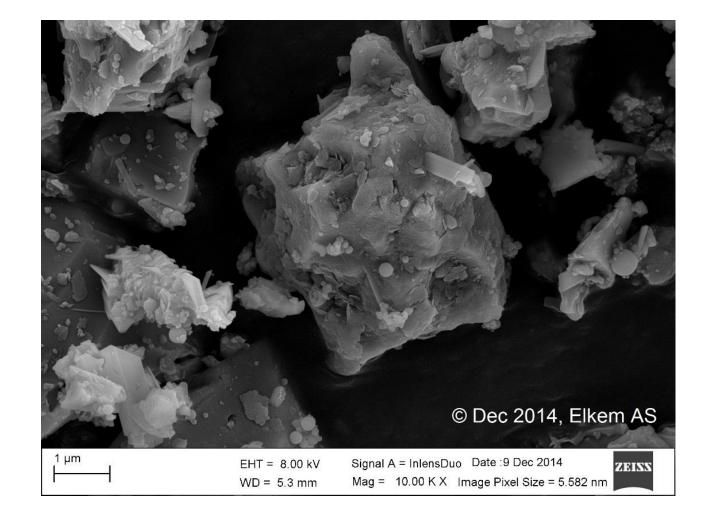
Leading producer of electrode paste and other carbon products



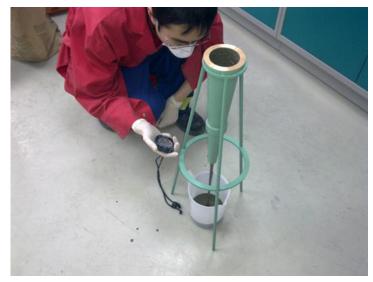
Elkem Silicon Materials: world leading supplier of microsilica


KEY FACTS

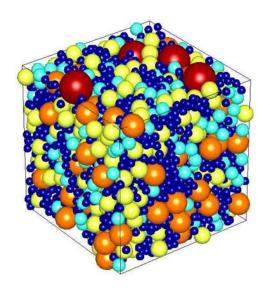
- One of the world's leading suppliers of silicon and Microsilica
- Four* smelting plants, two R&D centers, quartz mines, processing sites and an extensive global sourcing and sales network
- Strong customer relationships based on specialized products developed to improve customer's yield
- Solid energy recovery competence
- Secured access to high-grade raw materials

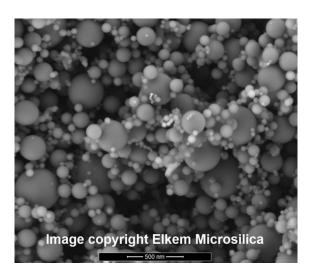

LOCATIONS

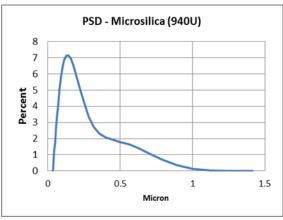
Choosing microsilica supplier – Viewpoints


- Over the past 30 years, Elkem Microsilica® has established itself as a reliable material for producing HPC
- Microsilica contributes to optimised particle packing in concrete, enabling a dense structure with high strength and high durability
- High performance concrete mixtures are characterised by relatively low water content and high powder content, therefore HPC mixtures tend to more sensitive to the individual characteristics of microsilica from different furnaces/suppliers
- Effective dispersion of the microsilica particles is important, to ensure optimal performance
 - Dispersion can be achieved by thorough mixing combined with the use of a compatible superplasticiser
- Factors influencing the performance of a microsilica in a concrete mixture include physical factors such as particle size, shape and agglomeration. Also, chemical interaction between the silica fume, Portland cement and admixtures will influence performance

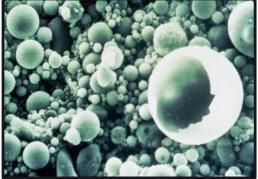
Chemical & physical attributes	USA ASTM C1240	European EN 13263	Japanese JIS A 6207	Chinese GB/T 18736	Brazilian NBR13956	Korean KS F 2567	Vietnamese TCXDVN 311	Indian IS 15388	Canadian CSA A3000
SiO ₂ (%)	minimum 85	minimum 85	minimum 85	minimum 85	minimum 85	minimum 85	minimum 85	minimum 85	minimum 85
SO ₃ (%)	-	maximum 2	maximum 3	-	-	maximum 3	-	-	maximum 1
Cl (%)	-	maximum 0.3	maximum 0.1	maximum 0.2	-	maximum 0.3	-	-	-
Free CaO (%)	-	maximum 1	maximum 1	-	-	-	-	-	-
MgO (%)	-	-	maximum 5	-	-	maximum 5	-	-	-
Free Si (%)	-	maximum 0.4	-	-	-	-	-	-	-
Alkalis (Na ₂ O eq.%)	Report	-	-	-	Report	-	-	maximum 1.5	Report
Moisture (%)	maximum 3	-	maximum 3	maximum 3	maximum 3	-	maximum 3	maximum 3	-
Loss on ignition (%)	maximum 6	maximum 4	maximum 5	maximum 6	maximum 6	maximum 5	maximum 6	maximum 4	maximum 6
Specific surface area, BET (m²/g)	minimum 15	min 15 max 35	minimum 15	-	-	minimum 15	-	minimum 15	minimum 15

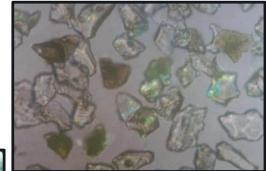

Choosing microsilica for high performance concrete

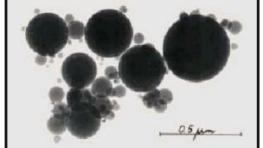




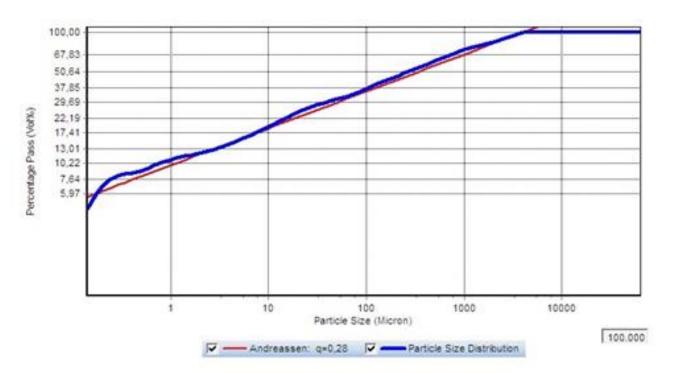
Particle packing






Comparison of particle size & shape

Fly Ash (~ 10 microns)


GGBS (~ 10 microns)

Microsilica (~ 0.1 microns)

EMMA program <u>www.elkem.com</u> Ref. A.H.M. Andreassen and J.Andersen, *Kolloid Z.* (1930)

Sustainability

Material	Embodied CO ₂ (kg / tonne)
Portland cement, CEM I	930
GGBS	52
Fly ash	4
Microsilica	28

Source: TR 74 – Embodied CO₂ of main constituents of reinforced concrete

Important note: UK data comparison, typical delivered product

Reasons for selecting Elkem Microsilica® – High Strength Benefits

Example: One Island East Building 308 metre tall building, Hong Kong

Comparison of design options, Grade 45 or Grade 100?

Grade 45	Grade 100		
45,440 m³ concrete	32,000 m ³ concrete		
14,768,000 kgCO ₂	10,432,000 kgCO ₂		

Grade 100 = 15% less concrete

- Cost savings
- Environmental benefits

Grade 100 mix design

- PC 380 kg/m³
- Fly ash 145 kg/m³
- Microsilica 58 kg/m³
- Superplasticiser
- w/c ratio 0.26

Comparison of C45 vs C100 Concrete

(One Island East Building – Ref. F. Chan, MASTEC, HK, 2009)

	Carbon footprint each ingredient (kgCO ₂ /kg)	of	Weight of each ingredient unit volume of concrete (k Grade 45 normal concrete		
Cement	0.83		380	380	
PFA	0.01		125	145	
CSF	0.01		0	58	
Aggregates	0.005	1,610		1,640	
Water	0		200	150	
Carbon footprint per unit volume (kgCO ₂ /m³)	-		325	326	
		Grade 45 normal concrete		Grade 100 HPC	
Carbon footprint per unit volume (kgCO ₂ /m³)			mai concrete	326	
Concrete consumption (m ³)			140	32,000	
Total carbon footprint (kgCO ₂)			768,000	10,432,000	
Gross floor area (m ²)			141,000		
Carbon footprint per unit floor area (kgCO ₂ /m ²)			05 74		

High performance concrete with Elkem Microsilica®

- Higher performance
 - Strength
 - Rheology
 - Durability
- Less permeable
 - Higher resistance to chloride ingress & damage
 - Longer service life
- Sustainable

ADVANCED MATERIALS SHAPING THE FUTURE

